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Abstract

This report presents the results of investigations in using a medium-to-high accuracy inertial
navigation system (INS) and a geodetic quality Global Positioning System (GPS) receiver on an
airborne platform to determine the gravity disturbance vector along the trajectory of the aircraft.
The main products of these investigations consist of derivations of alternative algorithms to
estimate the horizontal gravity vector components given that the INS’s under consideration have
different types of available output data, either time-integrated accelerations and direction cosines or
raw accelerometer and gyro data. In addition, two distinct data processing methodologies are
elucidated to combine the GPS and INS data. The first is based on a traditional Kalman filter
approach that treats the gravity disturbance vector as a stochastic process, and the second is an
extension of the scalar airborne gravimetry concept. Also, the configuration details of a loosely
coupled INS/GPS system for airborne application are given, with particular emphasis on time
synchronization.

A limited number of field tests (ground and airborne) with the LN93 and LN100 were
performed. Results from these tests verify the specified accuracy of the INS and yield initial
attempted estimations of the vertical deflection using the traditional Kalman filter approach. While
the latter are inconclusive in assessing the precision level achievable with this method and
instrumentation (due to unexpectedly poor gyro performance), they do indicate the feasibility of the
approach provided the INS gyros perform at the specified level.




1 Background

Knowledge of the Earth's gravity field is an essential element in most geodetic and many
geophysical applications, dating back to the 17th century (Newton, Huygens), and firmly
established for geodesy by F.R. Helmert (1880) who developed the modern concept of the geoid
as geodetic reference surface to approximate the shape of the Earth. (The geoid is an equipotential
surface of the Earth’s gravity field that closely approximates mean sea level.) Since the 1950’s, the
Earth’s gravitational field also played a significant role in satellite orbit determination and in inertial
navigation and guidance. Conversely, with observations of satellite orbits, and especially with
satellite altimetry over the oceans (approximately the geoid), as well as the steady accumulation of
surface gravity measurements, very accurate models of the Earth’s gravity field have been
developed during the last forty years, and significant strides have been made during the last decade
(Nerem, 1995; Nerem et al., 1995). With these efforts, the geoid can now be calculated
worldwide to an accuracy of better than one meter (NIMA, 1997); in ocean areas to about 30 cm
(Rapp, 1996), and on some continents to better than 2 cm over 50 km (Milbert, 1997; see also
Balmino and Sanso, 1995). Yet the gravity field with its infinite detail and information remains a
key component in geodesy and geophysics and the object of continually improving measurement.

One particularly relevant need to know the Earth’s gravity field concerns inertial navigation and
guidance systems. Historically, the inertial navigation system (INS) has provided the principal
means of autonomous navigation and guidance systems of aircraft, ships (including submarines),
and missiles. The recent rapid developments and achievement of high accuracy with the Global
Positioning System (GPS) have quickly overtaken the INS in terms of the range of applications
and the long-term maintenance of mission accuracy. However, due to the recognition of the
limitations and vulnerabilities of GPS, as well as new technological advancements in inertial
instrumentation, INS is considered a valuable, if not indispensable means to enhance, aid, or
replace GPS in various navigation, positioning, and guidance scenarios. Inertial navigation still is
the only method that provides fully autonomous, completely stealthy, and jam-proof navigation
and guidance. Efforts to make GPS immune to jamming have been largely unsuccessful.

On the other hand, unlike GPS, very precise inertial navigation systems require knowledge of
the Earth's local gravity vector field, specifically the direction of the gravity vector. It may be
noted that GPS also requires some knowledge of the Earth gravitational field in order to determine
precise orbits of the GPS satellites; however, only very long-wavelength information is required
since the orbits have high altitude (20,000 km). The direction of gravity is prescribed naturally by




the total mass density structure of the Earth and can be referenced to the direction defined by the
surface normal (perpendicular) of a rotational ellipsoid that approximates the geoid. The difference
between these two directions is known as the deflection of the vertical. The two angular
components of the deflection of the vertical are also related directly to the horizontal (with respect

to the ellipsoid) components of the gravity vector (Figure 1), where the signs are a matter of
convention.
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Figure 1: The geometry of the deflection of the vertical.

Although global models for the Earth's gravitational field are improving (like NIMA's EGM96,
Lemoine (1996)) shorter-wavelength signatures are either very poorly modeled (less than 100 km)
or only moderately well known (100 km to 1000 km), especially in rugged terrain regions of the
world and the polar regions. A recent study by Jekeli (1998a), that compares astronomically
determined deflections of the vertical in the United States to corresponding deflections computed
from EGMO6, indicates that the EGM96 gravity model at wavelengths shorter than 200 km may be
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under-powered. This conclusion (requiring further verification) is indicated from considerations of
the implied power of the signal beyond the cutoff wavelength of 100 km. Specifically, the EGM96
model implies that the root-mean-square of the deflection of the vertical with wavelen gths shorter
than 100 km in the conterminous U.S. (CONUS) is only 1.33 arcsec; while the corresponding
value for the astronomically determined deflections in CONUS is 3.84 arcsec.

On the other hand, a significant part of the error budget of high accuracy inertial systems (0.1
to 1.0 nmi/hr systems) is the unknown gravity field, as shown by Jekeli (1997). That is, a high
accuracy system which should be accurate to 0.1 nautical mile per hour (or, assuming linearity,
about 15 meters per 5 minutes) is susceptible to unknown gravity effects (even with respect to
EGM96) of about 10 meters over that same interval. Also, it is seen in this study that gravity
compensation for high-accuracy INS is required primarily for wavelengths greater than 10 km, or
higher depending on the speed of the vehicle. Therefore, better knowledge of the Earth’s gravity
field, especially at wavelengths between 10 km and 200 km, is required to support high accuracy
(free-) inertial worldwide navigation and guidance.

Lacking accurate and sufficiently dense (vertical) gravity surveys, the total gravity vector is still
not well known in remote and inaccessible regions, such as the Himalayas, the Andes, the polar
regions, some coastal regions, and some interior continental regions. To support improved
modeling of the gravity vector field requires regional gravity mapping. The more direct method
using astronomic measurements to determine the direction of gravity is considered too costly, as
well as practically unfeasible, in many regions. However, it is possible to estimate, on the basis of
potential theory, the horizontal gravity components from vertical component values that are densely
distributed regionally. Therefore, to date, most determinations of the deflections have been derived
from scalar (vertical) gravimetry. That is, only the vertical component of the gravity vector is
measured since this is much easier in terms of methodology and cost. These surveys can be done
on the ground using conventional gravimetric surveys or with much greater efficiency and
accessibility to remote areas, but with less accuracy, using airborne platforms. For example, one
of the most successful of the airborne gravimetric systems is being operated by the Naval Research
Laboratory (NRL) by Dr. John Brozena (Brozena and Peters, 1994). Recently, vast previously
unmapped areas of Greenland and the Arctic Ocean were overflown with a gridded pattern by NRL
yielding an accuracy of about 5 mgal with 15 km resolution in the vertical gravity values (Forsberg
and Kenyon, 1994).

A significant drawback of scalar surveys is that the determination of the horizontal gravity .
components requires numerical integration of gravity data over larger regions (Vening-Meinesz
integrals). Thus, mapping the total gravity vector using scalar gravimetry relies not only on
accurate measurements over large regions, but also on a physical model (usually approximate) that




relates the measurements to the desired quantities, in this case, horizontal gravity components.

Other moving-base systems that measure the total gravity vector or the gravity gradient tensor
have been considered (and tested, in the case of the gradiometer, Jekeli (1988)). These systems
provide a more direct (in situ) measure of the vector field and rely less on the use of approximate
potential theory models to estimate the deflection components. A fully operational system, the
Gravity Gradiometer Survey System (GGSS) constructed by Bell Aerospace, was tested under
NIMA (formerly DMA) sponsorship in the 1980’s and yielded 3-6 mgal accuracy of wavelengths
between 10 and 100 km in the horizontal components of the gravity vector (Jekeli, 1993). This
particular gravity gradiometer system measures the five independent gravity gradients that can be
integrated to yield the gravity vector. The gradiometer is considered in the geophysical community
to be the instrument that will yield the high resolution and accuracy (1 mgal over 1 km) gravity
surveys needed for mineral exploration, upper crustal structure modeling, and local geoid
determination. Therefore, gravity gradiometry promises to yield directly the fine structure of the
vector gravity field, while also overcoming the scalar limitations. Further development of
instruments and testing are needed to demonstrate the full potential of these systems.

A third system that has been under study for some time, but not fully realized in practice, is the
integrated INS/GPS platform. The principle of measurement is identical to moving-base scalar
gravimetry, but extended to three dimensions. With GPS one measures the total kinematic three-
dimensional acceleration of the vehicle as determined from its three-dimensional positions. Using
the triad of accelerometers in the INS one measures the three-dimensional specific forces acting on
the vehicle. The difference between the two types of acceleration vectors is the gravitational
vector. As such, the INS/GPS system provides direct measurements of the horizontal (and
vertical) gravity components that rely only on the quality of the measurement systems and not on
(usually approximate) analytic models relating vertical and horizontal components. On the other
hand, the quality of the sub-systems, INS and GPS, is such that errors at both ends of the
spectrum limit the gravitational signal that may be extracted from such an integration.
Nevertheless, numerous studies have been conducted that show the feasibility of integrating INS
with GPS to conduct airborne vector gravimetry (Eissfeller and Spietz, 1989; Schwarz et al., 1992;
Jekeli, 1995). Simulation studies by Jekeli (1995), Gleason (1992), and Wang et al. (1997),
among others, have shown that the accuracy of recoverable gravity is about 3-4 mgal over
wavelengths of 30 km to 200 km using a high-accuracy INS and differential GPS positioning.
The development of such systems has been hindered in part by the expense of high quality INS,
being about five times the cost of a high quality GPS receiver.

The most difficult aspect of vector gravimetry using GPS/INS is the drift error in the angular
data provided by the gyros that are needed to properly orient the accelerometers. An orientation
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error at the level of 1 arcsec translates into a 5 mgal error in the horizontal gravity component. The
growth in the orientation error can be controlled by imposing velocity control (zero velocity
updates, or ZUPT’s) at frequent intervals (e.g., Rose and Nash, 1972); or on an airborne system
by using a star tracker to provide absolute orientation of the system to an external reference frame,
as was done with success by Northrop Corporation (1986). Alternative, less costly schemes have
been considered, such as photogrammetric control (Wang et al., 1997). Or, Jekeli (1995) also
argued that if the orientation error growth is indeed a long wavelength phenomenon, then short-
wavelength gravity estimation should be possible without resorting to external attitude aiding,
where the long-wavelength component (2 200 km) would come from a global spherical harmonic
model.

This report reviews some of the activities surrounding the use of the LN93 and LN100 Litton
inertial navigation systems and the Global Positioning System (GPS) to measure the total gravity
vector using an airborne platform. No conclusive results from actual test flight can be reported at
this time; however, various models and evaluations of the INS are presented, with
recommendations for further studies.

2 INS Instrumentation and Measurements

An inertial navigation system (INS) consists of an inertial measurement unit (IMU) and a
navigation computer.  The essential element of an IMU is the accelerometer whose output is
integrated twice in time to obtain positions. A common class of accelerometers is the force-
rebalance type. Although a variety of designs exist, most are based on the principle of maintaining
the null position of a proof mass on a spring. The electronically applied force needed to do this is a
measure of the acceleration. Three accelerometers with sensitive axes mutually perpendicular
provide three-dimensional navigation.

Of equal importance, however, is the coordinate frame in which the accelerometers are to
provide positions. In this respect, not only the orientation of the accelerometers in the coordinate
system, but also their angular velocity affect the determination of position. The orientation
determines the component of the position vector that a particular accelerometer provides; and, as is
known from elementary physics, the angular rates with respect to an inertial frame contaminate the
accelerometer outputs with centrifugal and Coriolis accelerations.

The orientation and angular rates of the accelerometer platform are determined with
gyroscopes. Most INS for commercial deployment, today, use either the ring laser gyro or the
less costly (and less accurate) fiber optic gyro. Both types of gyros require that the INS be




mechanized in the so-called strapdown configuration; that is the INS is physically mounted to the
frame of the vehicle (no gimbal support system). This reduces the cost of the INS considerably as
compared to' gimbal-supported, local-level stabilized systems. It also subjects the system to the
entire spectrum of vehicle dynamics and the navigation accuracy is less than with the stabilized
(motion-isolated) systems. Figure 2 is a schematic drawing of a strapdown platform for the
IMU’s.
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Figure 2. Inertial Measurement Units in a strapdown system.

The ring laser gyro (RLG), in principle, has no moving parts — it is based on the fact that the
frequency of a light beam travelling in a resonant closed circuitous path (where the number of
wavelengths is always the same; i.e., it is a laser) must change if the apparent length of the circuit
changes because it rotates in inertial space. The latter property is called the Sagnac effect and is a
consequence of general relativity where the speed of light is a constant independent of the frame in
which it is traveling. Two such counter-travelling beams of light are used to create a fringe pattern
where they recombine. The fringe pattern is stationary if there is no rotation in inertial space.
But, it migrates in the presence of rotation about the axis perpendicular to the plane of the circuit,
because then one beam sees a longer path, the other a shorter path; and the number of fringes
passing a detector per unit time indicates the rate of rotation.

The major problem with RLG's is a phenomenon called lock-in: due to imperfections
(scattering of light in the resonant cavity) the two beams lase at the same frequency even in the
presence of a small rotation, typically up to several hundred degrees per hour. They lock to the
same frequency and indicate a zero rotation. One common solution to this problem is to bias the




output of the device by applying a physical rotation away from the lock-in range. To maintain
stability, this mechanical "bias" is in the form of an alternating rotation, i.e., a dithering or
oscillation (tens to hundreds of Hz) of the gyro about its sensitive axis. This is the operational
concept of the gyros used in the Litton LN93 INS.

A newer approach is to apply an optical bias by creating left- and right-circular polarization of
the two beams, respectively. In the presence of an applied magnetic field, the speeds of the beams
differ, which is equivalent to an effective difference in path length (Faraday effect), hence creating
a bias in the frequency difference. The complete absence of moving parts (no mechanical
dithering) improves the stability and substantially reduces the random noise of the IMU as a whole.
This is the operational concept of the gyros used in the Litton LN100 INS.

Size, weight, and power requirements, as well as the standard error budgets for each system
are listed in Table 1 and Table 2. The accelerometers are the same model for both systems, but
presently manufactured sensors are slightly improved. The characteristics of these two systems
were provided by Litton (person communication). Both are quite similar and several other
subordinate error sources, especially misalignments, temperature transients, and other correlated
noise, as well as acceleration sensitivities are not included here.

Table 1: Essential characteristics of the LN93 and LN100 inertial systems.

LN93 LN100
Data Rate 20 Hz (user defined) 32 Hz (256 Hz, raw data)
Size (excludes mount) 1089 cu. in. 539 cu. in.
Weight (excludes mount) 48.5 lbs. 19.4 1bs
Power 28 VDC, 150 Watts 28 VDC, 26.5 Watts

)




Table 2: Essential error budget for LN93 and LN100 inertial systems.

LN93 LNI100

Accelerometer (Litton A-4 model)

Bias Error 25 mGal 20 mGal

Scale Factor Error 120 ppm 40 ppm

White Noise 5 mGal/NHz 5 mGal/NHz
Gyro (ring laser gyro)

Bias (Drift) Error 0.003 °/hr 0.003 °/hr

Scale Factor Error 5 ppm 0.2 ppm

White Noise 0.0015 °Ahr <0.001 °/Nhr

Figure 3 shows the basic configuration of the INS and computer interface for the LN93. A
similar setup exists for the LN100. The computer used with the LN93 is a laptop computer
mounted in a so-called docking station that contains both the 1553 bus controller card and the timer
card. The 1553 card is the direct interface to the INS and all requests of data from the INS are
made through this bus controller. The timer card can be programmed to synthesize a sequence of
interrupts at a specified rate which is then used to request the INS data at that rate. In the case of
the LN93, the data request rate is 20 Hz. All INS data requests are synchronized to GPS time.
Each data item from the INS includes a time tag relative to the INS clock which can be used to
determine the actual time for which the data item corresponds. Additional data are retrieved from
the GPS receiver by the bus controller software to determined the actual GPS time stamp of the
one-second-pulse, and to provide altitude data for the INS. The INS data are saved by the bus
controller software in the RAM of the laptop computer and transferred to hard disk storage at the
conclusion of the mission. The GPS raw data are stored in the GPS receiver and also later
retrieved and processed.

1553 Card data 1 | N93INS
1 pps
PP Timer Card
GPS
RCVR |_data ~ com
port PC —™1 display

Figure 3: Basic configuration of INS, GPS receiver, and computer test equipment.




The data output options of an INS range from position and velocity to orientation angles, as
well as raw sensor data, system status data, and time tags. The type of output is entirely dictated
by the navigation software that the INS manufacturer creates for its customers. The software for
the LN93, that is on loan to Ohio State University from Litton, allows users to request position and
velocity in the navigation frame (wander-azimuth frame) and the navigation-frame-to-Earth-fixed-
frame direction cosine matrix, all with double precision (32 bit data), while orientation angles of
the body frame with respect to the navigation frame are available only in single precision (16 bit
data). No raw accelerometer and gyro data are available. The position coordinates have
quantization errors of about 43 cm in latitude and 63 cm in longitude, being due entirely to an
artifact of the data processing performed by the navigation software. This is shown in Figure 4
where differences between indicated latitude and longitude values (converted to linear measures in
units of meters) where computed for one-second intervals. The data were obtained by moving the
LN93 in the laboratory. The velocities do not have this quantization error and can be integrated
independent of the INS software to obtain position coordinates at a precision level of a centimeter,
or better.

Nevertheless, the lack of availability of raw sensor data from the LN93 makes it less useful for
wider geodetic applications and tightly coupled integration with GPS. In addition, care must be
exercised in synchronizing the INS and GPS data, since the INS software, performing real-time
data processing, makes data available to the user with time validity tags showing significant time
delays from the actual data output time. The software of the LN100 obtained by OSU’s Center for
Mapping was specifically modified to provide raw sensor data which can be processed by the user
independently of the navigation software. Furthermore, the time synchronization is less
problematic since the time of raw sensor output coincides very closely to the time validity of the
data (since very little processing takes place in the INS). The raw data for the LN100 consist of
velocity increments from the accelerometers and angle increments from the gyros at the high

sampling rate of 256 Hz. In Section 3, algorithms are developed to process these data for geodetic
applications.
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Figure 4. LN93 indicated latitude differences (top) and longitude differences (bottom)
between 1-second epochs. Ordinate is in units of meters; abscissa in units of seconds.
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3 Algorithms and Models for Vector Gravimetry

3.1  Basic Equations
Navigation using an INS requires knowledge of the Earth's gravity vector field. That is, the
INS operates under the basic relationship (Newton’s Second Law of Motion) between specific

force sensed by accelerometers, a, and total acceleration of the vehicle, the second time derivative
of position, x, given by:

X=a+g (1)

where g is the gravitation vector. Integrating this equation to get position, x, and velocity, x,
from sensed acceleration, a, requires knowledge of the gravitation vector, g. Conversely,
combining INS with an independent measurement of x (or x), such as from GPS, yields a
measurement of g .

Equation (1) holds for an inertial frame, only. For frames attached to the rotating Earth, orto a
vehicle, similar equations are readily derived, but are complicated by the inclusion of Coriolis
terms arising from the rotation of the Earth or vehicle with respect to an inertial frame (see Britting,
1971; Jekeli, 1998b). Usually, for local-level mechanizations, the gravitation vector is combined
with the centrifugal acceleration arising from Earth’s rotation and is then called the gravity vector.
For the sake of simplicity we use the notation, g, for the gravity vector, as well, since the
gravitation vector will not reappear in our discussions. The gravity vector may be separated into
two parts, a dominant, so-called normal gravity vector, Y., that accounts for the centrifugal part
and all but about one part in 10* of the total gravitational vector, and a residual, the so-called
disturbance gravity vector, 8g, such that g = Yn + g, where n is a unit vector along the normal
to an ellipsoid and y= |‘y| . The value ¥ can be calculated exactly on the basis of a well defined
normal gravity field (Heiskanen and Moritz, 1967), where for highest accuracy at points above the
ellipsoid, the curvature of the field’s horizontal gradient must be taken into account. In a local
north-east-down coordinate system

Sg=g-v=(g& -gn &) @

(see Figure 1) where €, n are the deflection of the vertical components, and og=|g|-v isthe
(scalar) gravity disturbance.

The analogue to equation (1), now formulated for the north-east-down coordinate frame, is
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written as
Lv =a“—(m;‘n+m{‘e)xv“+g“ 3)

where v" is the velocity in the navigation frame (n-frame); a® and g" are, respectively, the
sensed acceleration and gravity vector, both coordinatized in the n-frame; and @], , @], are
angular rate vectors, respectively, of the n-frame and of the Earth-fixed frame (e-frame) each with
respect to the inertial frame (i-frame), as coordinatized in the n-frame (Britting, 1971). The second
term on the right of (3) is essentially due to the Coriolis and centrifugal accelerations of the n-frame
with respect to the i-frame. |

The LN93 navigation software uses the so-called wander-azimuth frame to perform the
integration of the navigation equations. This avoids certain singularities in the navigation equations
near the polar regions where the meridians converge (and longitude rate becomes undefined). The
wander azimuth frame is related to the n-frame as shown in Figure 5. The navigation equations in

this case are given by
at’ _a“’—(mi“"v+mi‘:)wi+gw C))

where v" is the velocity in the w-frame, and a%, g" similarly are coordinatized in the w-frame.
The sum of angular rate vectors in (4) is also equal to

w W e W w w

miw + mie = mie + (DCW + mic
(&)

- L AP

=g, +2C; @,

where C is the transformation matrix from the e-frame to the w-frame. It is determined by
integrating the angular rates, @, , given approximately by

cewW ?
w
\P)

%= 1| -vY ©
0

where r is the geocentric radius to the vehicle. The details of this integration are analogous to the
procedure outlined below for the raw gyro data processing.
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Figure 5: Wander-azimuth frame

As a first approximation, navigation computers use only the readily computable normal gravity,
Y'=y¥=1vn,in (3) or (4). The velocity indicated by the LN93 INS is then given (erroneously)
by vy, which satisfies the differential equation:

vy =a¥ — (o} + o) x vy +yv Q)

That is, this is the equation that is integrated by the LN93 navigation computer to obtain the w-
frame velocities. The latitude and longitude can be extracted directly from the transformation
matrix, C_', given by

— cosa. sind cosA — sina sinA  — cosa. sing sinA + sinot cosA coso cos¢
Co =| sinosing cosA - cosa sinA  sino. sind sinA + coso cosA - sino. cos ®)
cosd cosA —cosd sinA, —sind

This matrix, an array of direction cosines, is also available with high precision in the LN93 output.

3.2 Two Approaches to Vector Gravimetry

There are now two approaches to estimating the gravity disturbance vector. The first approach
uses an independent measurement of position (or velocity), such as from GPS, to compare against
the INS-indicated position (or velocity). The difference is due to many sources of error, including
the fact that only normal gravity, not the actual gravity vector, was used in the integration of (7).
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The total error in indicated velocity satisfies a linear differential equation that is readily derived
(using a linearity assumption for the error) from (4), as follows:

d
LoV =— o}, + o) v' - (o}, + of) 5v" + 8a¥ + TV 5p" + g ©)

where T¥ 8p" is the gravity gradient tensor multiplied by position errors in the w-frame (the
horizontal components of the resulting vector are usually negligible). The acceleration error, 8a¥ ,
further consists of sensor errors, 8a®, and a Coriolis term due to orientation errors, y¥ , resulting
from the erroneously computed transformation matrix, Cy :

da¥ =Cy dab+a¥ xy" (10)
These orientation errors satisfy their own differential equation given by (see Britting, 1971)
V' =— o} xy¥-Cy Saf, + SoY, (11)

whereS(o}’b are the gyro errors. We note that dY, and @' in (9) and (11) are also functions of
errors in the velocity. Thus, together, (9) and (11) yield a system of linear differential equations
for velocity and orientation errors. They describe a model for the dynamics of these errors.

The sensor errors and the gravity errors each have their own dynamics. The accelerometer
error may comprise a bias (random constant), a scale factor error (random constant), correlated
noise (e.g., a first-order Gauss-Markov process), and white noise. Similarly, the gyro error may
consist of a drift (random constant), a scale factor error (random constant), correlated noise (first-
order Gauss-Markov process), and white noise. Finally, the gravity error should be modeled as
some kind of correlated process. Usually, a second- or third-order Gauss-Markov model is used.
Including these dynamics into the basic dynamics system for the INS errors augments the system
of linear differential equations significantly. The details of this are not given here; they may be
found (for the case of n-frame coordinatization) in (Jekeli, 1995) and various other articles
referenced therein.

The basic idea is to use a Kalman filter to distribute the position or velocity information,
coming from an external source, such as GPS, in an optimal way so as to estimate the various
errors of the system. One of these will be an estimate of the gravity error, that is the gravity
disturbance vector. Again, the details of the formulations of the Kalman filter and all associated
models are not pursued here. Only a schematic diagram is shown in Figure 6 to illustrate the
essential processing technique. All details related to the processing of GPS phase data to obtain
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positions (or velocities) are also omitted.

apply corrections

+
My |-5% %8 j J' INS position, x

integrate navigation
equations

Stochastic error models Kalman Filter ) 8%

- IMU biases - estimate errors
- IMU scale factors

- IMU noise I
- gravity disturbance

8’>*—‘

GPS A2 :: GPS position, x

double-difference
phase processing

Figure 6: Traditional approach to estimate gravity disturbance from INS/GPS.

We note that the estimation of the gravity disturbance vector with this method absolutely
requires that it be assigned a stochastic model. This can be a serious drawback to the method since
the result may depend critically on the type of model chosen (see Jekeli, 1995). Furthermore, only
the horizontal components of the gravity disturbance vector can be estimated this way since the
integration of the inertial accelerations is quite unstable in the vertical (this is a well-known
phenomenon that precludes free-inertial navigation in the vertical for periods longer than a few
minutes).

The second approach is fundamentally different from the first. In this case no model for the
gravity disturbance is required, at least in theory. Instead of time-integrating the IMU data to
obtain positions (or velocities), the GPS positions are time-differentiated to obtain accelerations.
These are then compared to the accelerations coming from the IMU’s. One still has to account for
Coriolis terms due to rotating frames, and the estimation of IMU errors can still be done with a
Kalman filter, but the gravity disturbance is the result simply of a final differencing between two
type of accelerations, fundamentally as alluded to by equation (1). This method is, in fact,
precisely the way airborne scalar gravimetry is performed. Gravimeter measurements are corrected
for the Eotvos effect and differenced with vertical accelerations determined from GPS, or a laser

-16 -




altimeter, or the like.

In the case of the LN93, where raw acceleration data are not available, it is still possible to
derive a method based on this principle. We simply take the indicated velocities and transform
them back into accelerations with an appropriate numerical differentiation algorithm. From (1) and
(2), we have

5g¥=C¥x —a%—yV (12)

where C}" is the transformation matrix from the i-frame to the w-frame. Substituting (7) then
yields

57 =CY % -[dvy + (ol +al) xvy] a3

With C}' = C¥ C{ and (5) we rewrite this as follows

gv =Cy €53 -[ vy + 0%+ 2CY 0f)x W] (14)
where we note that CSx' #x°. Also, the transformation matrix, C{ , and the angular rate, @,
can be computed without error from Earth’s rotation rate.

It is possible to determine, independently, the total acceleration C; x' from GPS (the details,
again, are omitted as being outside the scope of the present report). The transformation matrix,
CY, is provided as output by the LN93 computer with high precision (although it also contains the
same quantization error demonstrated in Figure 4, this will affect the acceleration computation at
the part in 107 level — about 0.1 mgal). The angular rate, @, , is given by (6) (a more accurate
form that accounts for ellipsoidal effects can be derived), and the w-frame velocities are provided
by the LN93 with high precision. It remains, then, to differentiate these velocities numerically,
and all quantities on the right and side of (14) are thus obtained. Therefore, it is possible to
determine the gravity disturbance from indicated LN93 velocities and direction cosine matrix and
from GPS accelerations. The errors arising form the IMU’s must be treated in some way. This
could be done in an optimal manner as discussed below for the case of raw data processing.

In the case that raw accelerometer and gyro data are available, as from CfM’s LN100, one also
has two data processing options available to estimate the gravity disturbance components. The
traditional approach will not be described since it is identical to the case above, except that
positions can now be determined independently of the navigation computer, thus ensuring
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maximum computational precision (i.e., no artificial quantization effects). Only the second method
based on a comparison of accelerations will be discussed in some detail. In particular, the
processing of raw gyro and accelerometer data will be described in Section 3.3 following the
essential formula for gravity disturbance computation.

This second approach to gravity disturbance vector estimation in the general sense has been
considered by Jekeli and Garcia (1997), as well as by Schwarz and Li (1996). And, as already
mentioned it is completely analogous to traditional scalar gravimetry, but extended to three
dimensions. The essential idea is to combine equation (2) and equation (1) as follows:

b=’ as)
=C] (*'—- C:,ab) -y

where C{, is the transformation to the i-frame from the body frame (b-frame), in which the inertial

accelerations, a® , are measured. The transformation is obtained directly from the gyros of the

INS, as shown below. This “direct differencing” method is much simpler computationally than the

process indicated in Figure 6, and it uses data directly from the gyros and accelerometers, rather

than integrating these data to the level of positions. On the other hand, the GPS position data must

now be elevated to the level of acceleration. This means that noise in GPS position data is
amplified at high frequencies and requires careful filtering.

3.3 Algorithms to Process Raw Gyro and Accelerometer Data

The IMU produces accelerometer and gyro pulses: 8v, and 86,, respectively; where dvyisa
vector of increments in the sensor-frame velocity generated by the three accelerometers, and 50, is
a vector of increments in the sensor-frame angles generated by the three gyros. With
corresponding time increments, 8t , we have

dvi= | asydt, 86= | @i(r)dt (16a,b)

where a® is the acceleration vector in the s-frame (sensor frame) and o)iss is the angular rate with
respect to the i-frame (inertial frame), also in the s-frame. Note that the integration takes place in
the s-frame which is rotating with respect to the inertial frame. Also, we do not assume that the
sensor and body frames are equivalent. In fact, in determining accelerations we must distinguish
between the locations of the INS and the GPS antenna. This difference causes the so-called lever-
arm effect. The body frame is usually associated with the aircraft and we will assume the GPS
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antenna to be the origin of that frame. The s-frame has its origin located at some fiducial point on
the INS, as specified by the manufacturer. The lever-arm effect is discussed later in Section 3.3.3.

To determine the acceleration in the i-frame, it is necessary to solve for the acceleration in the
sensor frame using the &v,’s, and then to rotate this into the i-frame using the orientation
information contained in the 86,’s. The rotation matrix, Cl, that transforms a* into al,
according to a® = C a® is determined by integrating a differential equation relating the angular rates
to the rotation matrix:

Ci=CilQ:, (17)
where QF is a skew-symmetric matrix with components of @} as its off-diagonal elements:

0 —3 O
Q= w; 0 - (18)
-0, o 0

where 0, = [0}, 0, 0;]".

It is far easier to formulate an equivalent differential equation in terms of quaternions. Let
q={a,b,c,d)" be afour-vector of time-dependent quantities such that q satisfies the following
linear system of differential equations

1=7Agq (19)
where A is a 4x4 skew-symmetric matrix of time-dependent angular rates:

0 o 0, o
-0; 0 w; o
-0, —0; 0 o
—0)30)2—(01 0

A= (20)

It can be shown that
aZ+b%2-¢c2-d2 2(bc+ad) 2 (bd — ac)

Ci=| 2(c-ad) a2-bZ+c2-d? 2(cd+ab) 1)
2 (bd +ac) 2(cd—ab) a2-b*-c2+d?
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The elements of q are known as quaternions. The integration of q is done incrementally over a
time interval, such as 8t, or a multiple of this; and, this gives the elements of Cis for each step.

3.3.1 A Second-Order Algorithm

Since the time increment for an IMU is usually very small; e.g., the data rate may be 256 Hz,
so that &t = 0.00390625 s , it may be considered that ©f, is constant over this time interval. It is
not necessary to assume this; but then the integration formulas become more complicated, as seen

in the subsequent section. For constant angular rates over 8t , we have the estimate, from (16b), '
for the € step:

86y = @ (1) 8t | (22)

and, with matrix A assumed constant over this interval, denoted by A, , an analytic form of the
solution to (19) can readily be found. Itis

- 1a -

q=ezC-UDgq, ), 0<1-t_,; <8t 23)
which, in series form, yields the following iterative solution:

~ ~ ~ 2 ~ 3 -

Q) =(1+3 A8t + 1A+ LAV o+ ) ate_p), =12, 24)

where a single initial condition, ;i(to) , must be specified. A corresponding closed form may be
found by noting that the powers of the matrix Ag are either diagonal (even powers) or
proportional to .&, itself (odd powers). One has:

q(ty = |cos(}]38,[)1 +F8%—|sin(%|5§, ) Bel ate - p) (25)
e
where ISéQl = V 86:862 and
By=A,5t (26) .

The solution (24) is given, in principle, with two errors, an algorithm error (the solution (23)
assumed constant A-matrix) and a data error, both due to the assumption of constant angular rates.
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However, the data error, in a sense, is fictitious since the data are not the angular rates, as
approximated by ;\Q , but the integrals given by (16b). Thus, let

By=| A dt 27
ty_y

Using By instead of A8t in (24) yields the actual algorithm

at)=(1+1 B+ 1B+ LB+ . )a . t=12. (28)
gPttag

This formula, however, still contains algorithm error.

This algorithm error is of the order 8t3. Indeed, let the true quaternion be represented over the
integration interval by the series

qt) = q(tg_p) + q(ty_p) dt. +37 q(ty_ ) 8t2 + 37 q(tg Dot +. 29)

Substituting (19) yields

A 1,2
qr=[1+3A0 1 8+ J{Ar + A7) 82
(30)
.. . l . 1 3
+1;2(A!_1 + A!—l A!—l +‘§Al_1 A!—l +IA"— 1) 8t3 + ...] qQp-1

where all quantities are true, not approximate, and subscripts denote the time epoch at which they
are defined. Similarly, from (27) we may write in terms of true quantities:

Be=Ap 8t+3Ap 82+ 4 Ay 88 +.. 31)

Substituting (31) into (28) and comparing with (30), it is easily verified that the algorithm error is
Q-q= [fg(A!—x A -Ap A 1) 5 + ] qq- (32)

assuming the previous error, (iq__l —qp_1 , yields higher-order terms.
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It can be shown that the first term in (32) vanishes if the angular rate vector does not change
direction during the integration interval; i.e., in that case the A-matrix and its first derivative
commute. That is why the algorithm (28) is said to have commutativity error, or coning error.
In other words, if the angular rate vector does change direction, the system is “coning”.

3.3.2 A Third-Order Algorithm

One can design higher-order algorithms in a number of ways. One is to do a numerical
integration of (19) based on a model for the angular rates. The Runge-Kutta (R.K.) algorithm is
one such integrator; and, in turns out that the third order R.K. method with a linear model for the
angular rates yields an algorithm for the quaternions with fourth-order algorithm error. The third-
order R.K. method requires that the function being integrated is evaluated at either end of the
integration interval and half-way in between. Therefore, in this case the integration interval is
twice the data interval:

At=2 &t (33)
To simplify the notation, let miss(t) = a(t) , and assume that over the integration interval:
o) =@y_y+ay_,(t-tp_5)+O(At2) ; |t-t_,|<AL (34)

where the subscripts denote evaluation of the (true) quantity at the corresponding epochs spanning
intervals &t , not At. Substituting (34) into (16b) yields

Yy

39,_, =J at) dt'=(q_25t+—%('q_28t2+0(m3) (35)
-2
80y = | o(t)de=ay_,8t+3 dy_, 82 +0(Ar}) (36)

-1
Solving for ay_, and ay_,, it is readily verified that

ay_,= §%5-((3 86, - 88y) + O(At?) 37)
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ay_,= 3% (50, —56;_,) + O(At) (38)

Using these expressions in (34) yields for three consecutive epochs:

@y_, At=380,_, - 56+ O(At3) 39

ay_, At=30;_, + 50, + O(At3) (40)
3

ay At =3 86, - 86;_, + O(At) @1

Therefore, we have the following observed quantities, which are accurate in terms of the model to

second order:
oy_, At=350,_; - 56 42)
ay_, At=230;_, + 36, “3)
@y At=3 50, 50;_, (44)

With the Taylor expansions (35) and (36) substituted into the right sides, we also obtain

@y_, At=ay_, At + O(At3) | (45)
@y_; At=ay_, At+2 @y_, At2 +O[AL) (46)
oy At=@,_, At +Gy_, At2 + O(At?) | 47

The third-order R.K. algorithm, for q =f(q,t) , is given by

-~ - 1
B=qQe-2+¢ (Aqo+4 Aq; +Aqy) (48)

where
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Aqq= f(;i!-zv t!-z) At (49)
A1
Aq; = f(‘le-z +7 Aq, t!-—l) At (50)

AQ2=f(‘ie-2+2AQ1—AQO’l!)At 62

This iterative integration algorithm provides an approximate solution at intervals of At; but one
could do a second iteration, using the same data, on the in-between points - it is just a matter of
which starting value is chosen. Note that only one starting quaternion is required; the R.K.
algorithm is a single-step method.

From (19), we have f(q,t)=A(t) ¢/2; and using the observed values (42) - (44) for
A(tg_5), A(ty_ ), A(tp , equations (49) - (51) become with ﬁg = Ag At (from (42) - (44)):

AQO=%§!-2G!—2 (52)
13 1a o

Aq; =3By {1+ 7 Bpz)qi-2 (53)
124 14 1~ -

Aq2 =7 BT+ By 1 {1+ 7 B_p)- 5 Be_z|qu-s (54

Substituting these into (48) and simplifying the result yields

- 1 (4 ~ A 1 AN oA 1 ~ (4 1A -
Q= [I+ - (By+4 B, +By_p)+ - (1 +% Bc) By_1 By + 75 By (B!—l -3 Bz-z)] qp-2
(55)
By substituting (45) - (47) into (55), it is readily verified, with a comparison to (30), that
Q- qp= o(3t*) qp_, (56)

That is, equation (55) is a third-order algorithm; the algorithm error is of fourth order.

Higher order algorithms can be derived, but they will require larger integration intervals per
step (if the basic data interval, 8t, remains the same).

The initial value for the iteration, qq (or, q, ), is obtained from the initialization (alignment) of
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the IMU, typically provided by the navigation computer. Or one can determine the initial attitude
externally using (zero) velocity updates in a Kalman filter using standard procedures. If the result
is an initial rotation matrix the following inverse relationship to (21) can be used to get the initial
quaternion:

a= 'é‘ (1 +(c}) 11t (Cais)z,z + (Cis)w) .

b= 4—1::1 ((Cis)z,a - (CiS)S,Z)
(57
c= 213 ((C;)3,1 - (C;)lj)
d= 4—121 ((CQ) 2™ (Cis)z,l)
These equations are readily verified since Cy is an orthogonal matrix, where
ci=cicr -

and n denotes the navigation frame (n-frame). C} is obtained during the initialization phase and
C! can be determined from the known position of the system at the initial time.
Finally, it is noted that the quaternions must satisfy the following property:

a2+b2+c2+d%=1 (59)

On the other hand, the computed quaternions, ;1, from any algorithm may not satisfy this
constraint. This is due to numerical round-off error as well as model error and will cause the
computed transformation matrix to become non-orthogonal. To avoid this it is advisable
(practically necessary) to “re-orthogonalize” the computed quaternions at each iteration according to

- 1 -
q & —F/——1q
‘VqTq

which will ensure that EiT Ei =1 and that éf, is orthogonal.

(60)
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3.3.3 Lever-Arm Effect

Consider the sensor frame to be attached to the IMU, as before. In order to compare the
inertial accelerations determined at the IMU with the inertial accelerations determined by GPS at the
GPS antenna, it is necessary to correct for the lever-arm effects of the IMU with respect to the
antenna (or vice versa). Without loss in generality, one may assume that the b-frame and s-frame
are parallel; but their origins are offset by the lever arm, b® , the vector of coordinates of the sensor
(IMU) in the b-frame (Figure 7).

We have the following relationship

bi =ximl-—x§,0dy (61)

where all coordinates are in the i-frame. The acceleration of the b-frame can be expressed in terms
of the sensed accelerations in the s-frame by applying the the Coriolis law to (61), noting that
b°=0 (the two frames are rigidly connected, by assumption):

* i ° 1

xm,=x;,ody+l':i=i:,ody+cf, o xb® (62)

Differentiating again, we obtain

Q-i -ol

Koot = oy + (Ch 08, + CL O} ) x ¥ = Xhoy, + Ch b xbP+ Ch il x (0l xbY)  (63)

Coordinatizing this in the b-frame using C? , we have with x' =a' + g' from (1):

b,s _.b __b b b ‘b _ab . b by b
Cy ayce= a5 = Bpody + Bbody — Baccel + Wijp, XD + @y X (mibx b ) (64)

where it is assumed that Cj =1. This says that the acceleration sensed in the s-frame, but
coordinatized in the b-frame to which it is rigidly attached, is equal to the acceleration of the b-
frame plus various reaction forces supplied by the rigid support of the s-frame to the b-frame. The
first is due to the gravitational difference between locations of the accelerometer and case frame
origins, and the others are associated with the rotation of the case in the i-frame. gb is the
gravitation vector at the indicated point in the b-frame: the only component of concern is the vertical
component which varies by about ~ 0.3086 mgal/m .
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Figure 7. Accelerometer (sensor) and body frames relative to the i-frame.

Alternative formulas for the lever-arm effect from a practical viewpoint can be derived for the
case of twice differentiating lever-arm positions in the i-frame:

b b b d2 (i 4. b
Aaccel = Apody + Bbody — ggccel + C}) a?f(cia b ) (65)

and for the case of once differentiating lever-arm velocities, also in the i-frame:

b b b b b i b b
accel = abody + gbody" 8accel + Ci gf( L ®;p, X b ) (66)

a
It is readily verified that (65) and (66) are equivalent to (64). For the practical computations, in
both cases, it is necessary to know the transformation, Cl , from the body frame to the inertial
frame. For the latter case, also the angular rate of rotation, m}{, , must be known. These quantities
are determined from the gyro data using an algorithm such as described in Section 3.3.2. Note that
the transformation of the lever-arm to the i-frame must be done before implementing a time-
differentiation algorithm. Experiments have shown that these formulas are more stable and

accurate than (64) since the latter requires a numerical time-differentiation of the angular rate, @Y, .
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3.34 Final Computation

To compute the sensed accelerations form the accelerometer output data (16a), we may use a
first-order estimate:

~

ay = 55(8vy, 1 + vy 67)

Having determined the quaternions, q(ty , using (55), one computes Cis(tg) from (21). At the
same time, the lever-arm effects are applied to the measured accelerations (67) according to (65), or
(66). The normal gradient of gravitation should be used if there is a significant vertical component
in the lever-arm. The result is the b-frame accelerations, a b(tp , at the GPS antenna. Then, since
Cb(tg) Ci(ty , there is

ai(ty) = Ci(1 a®(ty ©8)

where ali(ty) is the inertial acceleration in the i i- -frame. This can be compared directly to the GPS-
derived kinematic acceleration in the i-frame, x", to get the gravitation vector in the i-frame:

gi=x'-ai (69)

It remains only to transform the gravitation vector into more appropriate coordinates, the n-
frame:

g'=C/g! (70)

where, again, Ci can be determined from the position of the GPS antenna. The accuracy of C}
need be only 1 part in 105 to get mgal accuracy in the gravitation vector.

This scheme so far does not account for the IMU errors. One method to estimate these errors
is to use a Kalman filter on a model for the accelerations, where the GPS-derived accelerations
serve as updates to the filter. The residual between the observed GPS accelerations and the
“adjusted” GPS accelerations would indicate the gravity disturbance. In this case no stochastic
model for the gravity disturbance is required as in the case of Kalman-filtering INS positions. A
schematic of this procedure is given in Figure 8.
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Figure 8: Alternative Data Processing for Vector Gravimetry

4 Tests and Analysis with the LN93 and LN100

Much of the difficulties surrounding the use of the LN93 centered on understanding the user
interface software supplied with the system. The software, written in Pascal, is authored by Litton
and is called the User-Friendly Bus Control (UFBC) software. It is written for the desk-top
personal computer and a Pentium based system is recommended. Furthermore, since a high
volume of data from the INS must be written to data storage very quickly, a RAMDRIVE must be
set up in RAM; at least 10 MB of memory must be available for the RAMDRIVE. Some details on
the individual components of the interface are documented in the report by Humphrey and
Kawakami (1996).

Figure 9 shows a schematic of the system interrupts that are used to control the timing and data
requests of the 1553 bus controller. The timing of the INS data is crucial since the difference
between GPS and INS clocks can amount to significant lags. The entire data retrieval from the
INS is governed by GPS time. A signal, called the PPS (pulse-per-second), is sent by the GPS
receiver through the timer card to the PC. The PPS is synchronized to GPS time to within a
millisecond, or better, depending on the receiver. Receipt of the PPS by the PC initiates a
sequence of events. First, a “no-data” message is sent to the INS, causing a bit-failure in the
system indicating a timer problem. This causes the INS clock to be reset to zero. This clock is a
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counter that fills a 16-bit register with 64 microsecond counts. After about 4.2 s, the counter
“turns over” to zero; thus a reset from the GPS PPS will yield an unambiguous time tag from the
INS between zero and one second for each retrieved data item. It is only necessary to identify the
PPS in terms of absolute time from the GPS receiver.

T T T T T o s e

GPS + i
! |

1 pps : IRQS * :

: Timer Card !

: Timer | :

: Chip — |

' IRQ7 CPU :

( ]

a — :

INS e 1553 !
1553 Bus | !

. o !
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Figure 9: Interrupts that control the timing of INS data requests.

The next event triggered by the receipt of the PPS is the start of a clock on the timer board that
counts off 0.05 seconds, where each count serves to identify the next request of data from the INS
through the 1553 bus. It is noted that the time tags of the INS data refer to the time of validity of
the data computed by the INS, for example, the velocity or position coordinates. These time
epochs reflect the time at which the raw data were sampled to compute the position or velocity.
Since there is a significant time (typically < 0.1 s) associated with these computations, the time tag
at the epoch of*the PPS, and for two epochs beyond this, actually refers to the previous PPS. This

is important to note for the proper interpretation of the time tags of the INS data relative to the GPS
time.
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It is also noted that the bit-failure caused by the no-data message prevents the INS from
optimally initializing the INS and entering into the NAV-READY mode. To circumvent the bit-
failure on initialization, a different bus controller file (that does not send this message) is used to
allow the INS to achieve the NAV-READY mode. Once NAV-READY is achieved, a new bus
controller file must be initiated by the user.

The UFBC software was modified to allow the option of running the INS without GPS time
synchronization. This proved useful in tests of the UFBC software and in laboratory tests where
only the navigation error characteristics of the LN93 were to be investigated.

Some difficulties that plagued the LN93 system integration included the failure to adapt the
UFBC software to retrieve and save also the GPS data from the receiver. This may be due to the
high VO rates that are imposed on the system, causing failures in saving any of the required data.
It was judged that the GPS receiver should save the GPS data independently of the INS, where, of
course, the same PPS time tags are applied to the GPS data. Other problems that needed to be
overcome for practical system integration concerned providing appropriate power from 12-VDC
batteries, or from 28-VDC aircraft power, to the 28 VDC input power of the INS, the 120VAC
input power of the PC, and the 12VDC input power of the GPS receiver.

Initial tests of the LN93 were done in the laboratory in order to understand the INS output data
and check out the general operation of the system. These test were followed by road tests, where
the INS was strapped in the back of a van and driven over a period of about 45 minutes in the area
of Columbus. Figure 10 shows the closed course followed for three such tests. One course could
not be completed due to a power failure just prior to returning to the start point. The misclosure,
calculated as the total distance between the true and indicated end points for each course, on
average, was 670 m. This is well within the 0.8 nmi/hr = 1.4 km/hr specified for the system; and
it shows that the LN93 is performing as expected, or better.
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Figure 10: Van Tests of LN93 in Columbus Area

During these road tests, GPS data were also collected using a Trimble 4100 SSI receiver, but
the results were rather poor due to frequent signal outages caused by many overpasses and other
obstructions. It was not deemed worthwhile to attempt further tests with the integrated GPS/INS
on the van at this time because of the difficulties of GPS data collection, the frequent power
problems that were encountered, and the difficulties of adapting the UFBC software to the specific
applications at hand.

Finally, some effort was undertaken to conduct an airborne test of the LN93. In collaboration
with the Ohio Department of Transportation (ODOT), a cradle was constructed for the INS that
could be slipped onto the seat rails of a small twin-engine photogrammetric aircraft. One test was
conducted but ended in failure because of a power interruption to the system during landing and
UFBC data handling problems. Future tests may be resumed on an opportunity basis.

The Center for Mapping (CfM) at OSU has developed an Airborne Integrated Mapping System
(AIMS) that includes a Trimble GPS receiver and a Litton LN100 INS (Grejner-Brzezinska and
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Phuyal, 1998). This system has undergone numerous flight tests and the data from one of the
early tests were analyzed to determine the viability of this system for vector gravimetry. Ground
tests conducted by CfM similar to those described above indicated that also the LN100 was
performing at the specified level of 0.6 nmi/hr = 1 km/hr.

The test flight that was analyzed was conducted in the St. Louis, Missouri, area; and the
indicated (i.e., free-inertial) INS and GPS trajectories are shown in Figure 11. The misclosure of
the INS trajectory is about 30 km after less than one hour of flight, probably due to excessive
errors in the gyro data (clearly, the system did not perform within specification during this test).
Grejner-Brzezinska and Phuyal (1998) report that for this test flight the attitude error estimated
using a Kalman and GPS position updates had standard deviations up to 17 arcsec (rms).
Therefore, this flight test was not particularly suitable for the purpose of vector gravimetry.
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Figure 11: INS and GPS trajectories of Flight #3, CfM, 3/6/97.
However, in order to test the Kalman filter software for estimating the gravity disturbance
vector, and because the trajectory included a relatively straight path, the data were analyzed. The

actual deflection of the vertical along the flight path was interpolated from a 2°x2’ DOV data base
provided by the National Imaging and Mapping Agency (NIMA). Figure 12 shows the relative

-33.-




deflections along the flight path; and Figure 13 shows the estimated deflections, the actual
deflections, and their differences. The Kalman filter that was used to estimate the deflections
included the error states noted in Table 2, as well as a correlated noise model (first-order Gauss-
Markov) for the accelerometers with variance equal to 25 mgal? and a correlation time of 5 min.
The gravity disturbance model was a third-order Gauss Markov model with variance equal to

480 mga.l2 and a correlation distance of about 26 km.
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Figure 12. Vertical deflection differences with respect to initial point.
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The results of the estimations are rather poor as seen in Figure 13. The errors in the estimated
deflections are as large as the deflections themselves. This is very likely due to the large errors in
the gyros. However, the east deflection error consists primarily of a trend and may reflect the fact
that the north gyro (whose errors contribute to the east deflection error) is always easier to calibrate
during INS initialization than the east gyro. We also see from Figure 11 that most of the position
error (at least initially) is in the north direction, again pointing to large east gyro errors. Thus,

* while the numerical results of this test are not satisfactory, there is some indication that we
understand the reason for this, which in itself is a useful conclusion. '
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Figure 13. a) Estimates of deflection components; b) true deflection components; c)
difference between estimates and true deflections. In all cases the solid line represents the
north deflection component. Ordinate values in units of arcseconds; abscissa in seconds.
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5 Summary and Conclusion

This report describes some practical experiences with the LN93 and LN100 inertial navigation
systems in the area of airborne vector gravimetry. No conclusive results from flight test data
analyses can be reported this time, but several aspects of such a gravimetry system have been
elucidated. The two inertial navigation systems are designated by the manufacturer as medium-to-
high accuracy systems, indicating that the measurements are of sufficient quality that when
combined with geodetic quality GPS receivers they should be capable of providing the precision
needed to predict the gravity vector with several mgal precision (not accuracy, because of long-
term drifts in the gyro data). The two systems under this discussion have significantly different
data output capabilities. In each case special data processing algorithms must be developed to
make optimum use of the data. These algorithms are described in detail in Section 3. They
differentiate between the type of output, whether precise velocities and direction cosines (LNO93) or
raw accelerometer and gyro data (LN100), and the type of methodology used to combine the INS
and GPS data, whether by time-integrating the INS data or by time-differentiating the GPS data.

Each of these possible processing algorithms carries its own advantages and disadvantages.
Using the velocities determined by the INS navigation computer may provide the best available
INS velocities, since they are based on the manufacturer’s (in this case Litton’s) extensively tested
navigation algorithm. Using the raw accelerometer data yields more flexibility in applying different
methodologies to combine the INS and GPS data, for example, allowing them to be more tightly
coupled. Using a Kalman filter to estimate the gravity disturbance components from time-
integrated IMU data is founded on optimal estimation theory, but requires a stochastic model for
the gravity disturbance. Also, the vertical component cannot be estimated since the IMU data are
not stable when integrated in the vertical dimension. Using a straightforward differencing of IMU
and time-differentiated GPS accelerations to obtain the gravity disturbance vector is a natural
extension of the quite successful airborne (scalar) gravimetry concept. However, a unified
approach that optimally accounts for IMU errors has yet to be developed and tested.

Several system tests were conducted in the laboratory and in the field to determine the quality
of the INS and to begin testing the algorithms for vector gravimetry. These tests showed that the
INS’s are performing as expected. However, several complications in physical system integration
and limited availability of suitable test data have precluded extensive analysis of these algorithms at
this time. It is anticipated that continued development of data processing methodologies and more
application-specific airborne testing will bear fruit in these areas. The simulation studies conducted
by numerous authors and the limited test results shown here all point in that direction.
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